



# Environmental product declaration

in accordance with ISO 14025 and EN 15804+A2

# VEX1010RS





Owner of the declaration: EXHAUSTO AS

Product: VEX1010RS

Declared unit:

1 pcs

This declaration is based on Product Category Rules: CEN Standard EN 15804:2012+A2:2019 serves as core

NPCR 030:2021 Part B for ventilation components

**Program operator:** 

The Norwegian EPD Foundation

**Declaration number:** 

Ref: NEPD-8571-8232-EN

Registration number:

Ref: NEPD-8571-8232-EN

Issue date:

Valid to:

13.12.2029

**EPD** software:

LCAno EPD generator ID: 716260

The Norwegian EPD Foundation

## **General information**

#### Product

VEX1010RS

#### **Program operator:**

The Norwegian EPD Foundation
Post Box 5250 Majorstuen, 0303 Oslo, Norway

Phone: +47 977 22 020 web: www.epd-norge.no

#### **Declaration number:**

Ref: NEPD-8571-8232-EN

#### This declaration is based on Product Category Rules:

CEN Standard EN 15804:2012+A2:2019 serves as core PCR NPCR 030:2021 Part B for ventilation components

#### Statement of liability:

The owner of the declaration shall be liable for the underlying information and evidence. EPD Norway shall not be liable with respect to manufacturer information, life cycle assessment data and evidences.

#### **Declared unit:**

1 pcs VEX1010RS

#### **Declared unit with option:**

A1-A3,A4,A5,B1,B2,B3,B4,B5,B6,B7,C1,C2,C3,C4,D

#### Functional unit:

1 ventilation unit

#### General information on verification of EPD from EPD tools:

Independent verification of data, other environmental information and the declaration according to ISO 14025:2010, § 8.1.3 and § 8.1.4. Verification of each EPD is made according to EPD-Norway's guidelines for verification and approval requiring that tools are i) integrated into the company's environmental management system, ii) the procedures for use of the EPD tool are approved by EPD-Norway, and iii) the process is reviewed annually by an independent third party verifier. See Appendix G of EPD-Norway's General Programme Instructions for further information on EPD tools

# Verification of EPD tool:

Independent third party verification of the EPD tool, background data and test-EPD in accordance with EPDNorway's procedures and guidelines for verification and approval of EPD tools.

Third party verifier:

Alexander Borg, Asplan Viak AS

(no signature required)

#### Owner of the declaration:

EXHAUSTO AS
Contact person: Lars R. Reinemo
Phone: +47 63 87 07 70
e-mail: Irr@exhausto.no

#### Manufacturer:

EXHAUSTO A/S

#### Place of production:

EXHAUSTO A/S Odensevej 76 DK-5550 Langeskov, Denmark

# Management system:

ISO 9001

#### Organisation no:

812 701 002

#### Issue date:

#### Valid to:

13.12.2029

## Year of study:

2024

# Comparability:

EPD of construction products may not be comparable if they not comply with EN 15804 and seen in a building context.

# **Development and verification of EPD:**

The declaration is created using EPD tool lca.tools ver EPD2022.03, developed by LCA.no. The EPD tool is integrated in the company's management system and has been approved by EPD Norway. NEPDT46 VKEs EPD-generator

Developer of EPD: Rasmus Runge Bechsgaard

Reviewer of company-specific input data and EPD: Henning Grønbæk

#### Approved:

## **Product**

## **Product description:**

VEX1010RS, compact air handling unit with rotary heat exchanger

#### **Product specification**

| Materials                                       | kg     | %      |
|-------------------------------------------------|--------|--------|
| Adhesive                                        | 0,40   | 0,19   |
| Electronic - Unspecified                        | 1,50   | 0,73   |
| Filter, mineral based                           | 0,42   | 0,20   |
| Glass fibre reinforced plastic, polyamide       | 3,15   | 1,52   |
| Insulation, Mineral based                       | 21,90  | 10,59  |
| Motor                                           | 9,45   | 4,57   |
| Plastic - Polyamide                             | 0,49   | 0,24   |
| Rubber, synthetic                               | 1,46   | 0,71   |
| Metal - Aluminium                               | 37,00  | 17,90  |
| Metal - Stainless steel                         | 6,53   | 3,16   |
| Metal - Steel                                   | 119,53 | 57,83  |
| Other                                           | 4,00   | 1,94   |
| Plastic - Acrylonitrile butadiene styrene (ABS) | 0,38   | 0,19   |
| Plastic - Polycarbonate (PC)                    | 0,50   | 0,24   |
| Total                                           | 206,71 | 100,00 |

#### Technical data:

See our calculation tool: EXselectPRO

#### Market:

Europe.

#### Reference service life, product

25 years.

#### Reference service life, building or construction works

50 years.

# LCA: Calculation rules

#### **Declared unit:**

1 pcs VEX1010RS

## **Cut-off criteria:**

All major raw materials and all the essential energy is included. The production processes for raw materials and energy flows with very small amounts (less than 1%) are not included. These cut-off criteria do not apply for hazardous materials and substances.

## Allocation:

The allocation is made in accordance with the provisions of EN 15804. Energy, water and waste production in-house is allocated equally among all products through mass allocation. Effects of primary production of recycled materials is allocated to the main product in which the material was used. The recycling process and transportation of the material is allocated to this analysis. The allocation is made in accordance with the provisions of EN 15804. Energy, water and waste production in-house is allocated equally among all

products through mass allocation. Effects of primary production of recycled materials is allocated to the main product in which the material was used. The recycling process and transportation of the material is allocated to this analysis.

#### Data quality:

Specific data for the product composition are provided by the manufacturer. The data represent the production of the declared product and were collected for EPD development in the year of study. Background data is based on EPDs according to EN 15804 and different LCA databases. The data quality of the raw materials in A1 is presented in the table below.

# **EXHAUSTO**

| Materials                                       | Source                               | Data quality             | Year |
|-------------------------------------------------|--------------------------------------|--------------------------|------|
| Adhesive                                        | ecoinvent 3.6                        | Database                 | 2019 |
| Electronic - Unspecified                        | ecoinvent 3.6                        | Database                 | 2019 |
| Filter, mineral based                           | ecoinvent 3.6                        | Database                 | 2019 |
| Glass fibre reinforced plastic, polyamide       | Modified ecoinvent 3.6               | Database                 | 2019 |
| Insulation, Mineral based                       | ecoinvent 3.6                        | Database                 | 2019 |
| Metal - Aluminium                               | Modified ecoinvent 3.6               | Database                 | 2019 |
| Metal - Stainless steel                         | ecoinvent 3.6                        | Database                 | 2019 |
| Metal - Steel                                   | ecoinvent 3.6                        | Database                 | 2019 |
| Motor                                           | Modified ecoinvent 3.6               | Database                 | 2019 |
| Other                                           | Material composition + ecoinvent 3.6 | Supplier data + database | 2019 |
| Plastic - Acrylonitrile butadiene styrene (ABS) | ecoinvent 3.6                        | Database                 | 2019 |
| Plastic - Polyamide                             | ecoinvent 3.6                        | Database                 | 2019 |
| Plastic - Polycarbonate (PC)                    | ecoinvent 3.6                        | Database                 | 2019 |
| Rubber, synthetic                               | ecoinvent 3.6                        | Database                 | 2019 |

# System boundaries (X=included, MND=module not declared, MNR=module not relevant)

| P                | roduct stag | je            |           | uction<br>on stage |     | Use stage End of life stage Beyond the system boundaries |        |             | End of life stage |                              |                          | Beyond the system boundaries      |           |                     |          |                                        |
|------------------|-------------|---------------|-----------|--------------------|-----|----------------------------------------------------------|--------|-------------|-------------------|------------------------------|--------------------------|-----------------------------------|-----------|---------------------|----------|----------------------------------------|
| Raw<br>materials | Transport   | Manufacturing | Transport | Assembly           | Use | Maintenance                                              | Repair | Replacement | Refurbishment     | Operational<br>energy<br>use | Operational<br>water use | De-<br>construction<br>demolition | Transport | Waste<br>processing | Disposal | Reuse-Recovery-<br>Recycling-potential |
| A1               | A2          | A3            | A4        | A5                 | B1  | B2                                                       | В3     | B4          | B5                | В6                           | В7                       | C1                                | C2        | C3                  | C4       | D                                      |
| Х                | X           | X             | X         | X                  | Χ   | X                                                        | X      | Χ           | Χ                 | X                            | Х                        | X                                 | X         | X                   | Χ        | X                                      |

System boundary:

This EPD is based on a cradle-to-gate with options, modules C1-C3 and module D cf. EN 15804 + A2, in which 100%-weight of the products have been accounted for.

The general rules for the exclusion of inputs and outputs follows the requirements in EN 15804, 6.3.5, where the total of neglected input flows per module shall be a maximum of 5 % of energy usage and mass and 1 % of energy usage and mass for unit processes.

#### Excluded processes:

- Use of electric screwdrivers during installation (module A5), and disassembly (module C1)

Product stage (A1-A3) includes:

- A1 Extraction and processing of raw materials
- A2 Transport to the production site
- A3 Manufacturing processes
- A1-3: The product stage includes all the raw materials, products and energy, transport to the production site, packaging and waste processing up to the "end-of-waste" state or final disposal. The LCA results are declared in aggregated form for the product stage, which means, that the sub-modules A1, A2 and A3 are declared as one module A1-A3.

Construction process stage (A4-A5) includes:

- A4: Transportation to the building site, is assumed to be an average of 300km.
- A5: Treatment of the plastic folio used as packaging material.

Use stage (B1-B7) includes:

- B1: This module has no activity.
- B2: To maintain the performance of the ventilation unit and ensure a continuous supply of fresh ventilated air continuously throughout the lifespan, it is necessary to replace the ventilation filters. The production of new filters and the waste treatment of the replaced filters are included in B2. There is calculated with one filter replacement per year, to best fit the market trends. (However, EXHAUSTO recommends replacement of the filters twice a year to maintain optimal IAQ) It is important to note that B2 is modelled for one year and does not represent the lifespan of 25 years.
- B3-B5: No repair, replacement, or refurbishment due to damage is expected within the reference service life of 25 years.
- B6: No specification regarding use is described in EN 50693:2019. Therefore, the Ecodesign Directive (COMMISSION REGULATION (EU) No 1253/2014 of 7 July 2014 implementing Directive 2009/125/EC of the European Parliament and of the Council with regard to Ecodesign requirements for ventilation units) is used to determine the reference capacity and thus the energy use of the ventilation unit. The Ecodesign requirements specify a reference flow rate set at 70% of the maximum flow rate. The annual operating hours are set to 8,760 hours per year as a conservative approach which is in accordance with the default value that is used in the Ecodesign directive to calculate the SEC (specific energy consumption).

B6 is modelled for 1 year.

B7: This module has no activity.

End of Life (C1-C4) includes:

For the end-of-life scenario, a collection rate of 100% is assumed.

- C1: No impacts from dismantling have been included in this module it is done manually.
- C2: Transportation to local recycling is assumed to be 200km.
- C3: The average waste treatment for the different materials has been utilised.
- C4: The average landfilling for the different materials has been utilised.

Re-use, recovery, and recycling potential (D) includes:

D: Potential benefits from recovery and recycling of materials from the product are calculated. The materials are either used as secondary material in a new product system, thus substituting virgin material, or incinerated with energy recovery.



Additional technical information:

# LCA: Scenarios and additional technical information

The following information describe the scenarios in the different modules of the EPD.

| Transport from production place to user (A4)                                                                                            | Capacity utilisation<br>(incl. return) % | Distance (km)        | Fuel/Energy Consumption | Unit  | Value<br>(Liter/tonne) |
|-----------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|----------------------|-------------------------|-------|------------------------|
| Truck, 16-32 tonnes, EURO 6 (km)                                                                                                        | 36,7 %                                   | 300                  | 0,043                   | l/tkm | 12,90                  |
| Assembly (A5) Waste, plastic, mixture, to average treatment - A5, inkl. transp. (kg)                                                    | <b>Unit</b><br>kg/DU                     | <b>Value</b><br>0,12 |                         |       |                        |
| Maintenance (B2)                                                                                                                        | Unit                                     | Value                |                         |       |                        |
| Filter component - ABS frame (kg) - Europe                                                                                              | kg                                       | 0,38                 |                         |       |                        |
| Filter component - Glass fibre (kg) - Europe                                                                                            | kg                                       | 0,42                 |                         |       |                        |
| Filter component - Glue, Polymeric mastic (kg) -<br>Europe                                                                              | kg                                       | 0,25                 |                         |       |                        |
| Filter component - Hot glue (kg) - Europe                                                                                               | kg                                       | 0,14                 |                         |       |                        |
| Operational energy (B6)                                                                                                                 | Unit                                     | Value                |                         |       |                        |
| Electricity, Denmark (kWh)                                                                                                              | kWh                                      | 5241,000000000       |                         |       |                        |
| De-construction demolition (C1)                                                                                                         | Unit                                     | Value                |                         |       |                        |
| Demolition of building per kg of ventilation product (kg)                                                                               | kg                                       | 206,70               |                         |       |                        |
| Transport to waste processing (C2)                                                                                                      | Capacity utilisation<br>(incl. return) % | Distance (km)        | Fuel/Energy Consumption | Unit  | Value<br>(Liter/tonne) |
| Truck, 16-32 tonnes, EURO 6 (km)                                                                                                        | 36,7 %                                   | 200                  | 0,043                   | l/tkm | 8,60                   |
| Waste processing (C3)                                                                                                                   | Unit                                     | Value                |                         |       |                        |
| Waste processing (CS) Waste treatment per kg Plastics, from incineration                                                                |                                          | 2,069                |                         |       |                        |
| (kg)                                                                                                                                    | kg                                       |                      |                         |       |                        |
| Materials to recycling (kg)                                                                                                             | kg                                       | 158,31               |                         |       |                        |
| Waste treatment per kg Bulk iron waste, excluding reinforcement, sorting plant (kg)                                                     | kg                                       | 9,45                 |                         |       |                        |
| Waste treatment per kg wire plastic, municipal incineration - C3 - RoW                                                                  | kg                                       | 0,93                 |                         |       |                        |
| Waste treatment per kg Hazardous waste, incineration (kg)                                                                               | kg                                       | 0,39                 |                         |       |                        |
| Waste treatment per kg plastic, industrial electronics, municipal incineration with fly ash extraction (kg)                             | kg                                       | 0,19                 |                         |       |                        |
| Waste treatment per kg Rubber, municipal incineration with fly ash extraction (kg)                                                      | kg                                       | 1,46                 |                         |       |                        |
| Waste treatment per kg Electronics scrap, Control units, incineration (kg)                                                              | kg                                       | 1,50                 |                         |       |                        |
| Disposal (C4)                                                                                                                           | Unit                                     | Value                |                         |       |                        |
| Landfilling of ashes from incineration of Plastics, process per kg ashes and residues (kg)                                              | kg                                       | 0,048                |                         |       |                        |
| Waste, plastic, mixture, to landfill (kg) Waste, scrap steel, to landfill (kg)                                                          | kg<br>kg                                 | 3,19<br>13,31        |                         |       |                        |
| Waste treatment per kg Copper slag, to landfill, residual material landfill (kg) - GLO                                                  | kg                                       | 0,36                 |                         |       |                        |
| Waste, aluminium, to landfill (kg)                                                                                                      | kg                                       | 2,64                 |                         |       |                        |
| Landfilling of ashes from incineration per kg wire plastic, from municipal incineration - C4 - RoW                                      | kg                                       | 0,13                 |                         |       |                        |
| Landfilling of ashes from incineration per kg<br>Hazardous waste, from incineration (kg)                                                | kg                                       | 0,074                |                         |       |                        |
| Waste, mineral wool, to landfil (kg)                                                                                                    | kg                                       | 22,32                |                         |       |                        |
| Landfilling of ashes from incineration per kg plastic, industrial electronics, From municipal incineration with fly ash extraction (kg) | kg                                       | 0,013                |                         |       |                        |
| Landfilling of ashes from incineration of Rubber,<br>municipal incineration with fly ash extraction (kg)                                | kg                                       | 0,076                |                         |       |                        |
| Landfilling of ashes from incineration of<br>Electronics scrap, Control units, process of ashes<br>and residues (kg)                    | kg                                       | 1,052                |                         |       |                        |
| Benefits and loads beyond the system boundaries (D)                                                                                     | Unit                                     | Value                |                         |       |                        |
| Substitution of electricity, in Norway (MJ)                                                                                             | MJ                                       | 3,47                 |                         |       |                        |
| Substitution of thermal energy, district heating, in Norway (MJ)                                                                        | MJ                                       | 52,56                |                         |       |                        |
| Substitution of primary steel with net scrap (kg)                                                                                       | kg                                       | 96,98                |                         |       |                        |
| Substitution of primary copper with net scrap (kg)                                                                                      | kg                                       | 2,12                 |                         |       |                        |
| Substitution of primary aluminium with net scrap (kg)                                                                                   | kg                                       | 33,86                |                         |       |                        |

# **EXHAUSTO**

**LCA: Results** 

The LCA results are presented below for the declared unit defined on page 2 of the EPD document.

| Environ        | Environmental impact Indicator Unit A1-A3 A4 A5 B1 B2 B3 B4 |                |                    |                    |             |          |          |            |           |          |           |  |  |
|----------------|-------------------------------------------------------------|----------------|--------------------|--------------------|-------------|----------|----------|------------|-----------|----------|-----------|--|--|
| <b>P</b>       | Indicator                                                   |                |                    |                    | A1-A3       | A4       | A5       | B1         | B2        | В3       | B4        |  |  |
|                | GWP-total                                                   |                | kg C               | O <sub>2</sub> -eq | 1,55E+03    | 1,01E+01 | 9,51E-03 | 0          | 7,79E+00  | 0        | 0         |  |  |
|                | GWP-fossil                                                  |                | kg C               | O <sub>2</sub> -eq | 1,55E+03    | 1,01E+01 | 9,50E-03 | 0          | 7,76E+00  | 0        | 0         |  |  |
|                | GWP-biogenic                                                |                | kg C               | O <sub>2</sub> -eq | 5,80E+00    | 4,19E-03 | 1,31E-06 | 0          | 2,24E-02  | 0        | 0         |  |  |
|                | GWP-luluc                                                   |                | kg C               | O <sub>2</sub> -eq | 6,07E-01    | 3,61E-03 | 7,29E-07 | 0          | 3,26E-03  | 0        | 0         |  |  |
| Ö              | ODP                                                         |                | kg CF              | C11 -eq            | 6,33E-05    | 2,29E-06 | 5,71E-10 | 0          | 7,68E-07  | 0        | 0         |  |  |
| Œ              | АР                                                          |                | mol I              | H+ -eq             | 1,20E+01    | 2,91E-02 | 1,17E-05 | 0          | 3,09E-02  | 0        | 0         |  |  |
| <del>***</del> | EP-FreshWater                                               |                | kg                 | P -eq              | 6,62E-02    | 8,09E-05 | 1,96E-08 | 0          | 1,86E-04  | 0        | 0         |  |  |
| 4              | EP-Marine                                                   |                | kg l               | N -eq              | 1,69E+00    | 5,76E-03 | 1,07E-05 | 0          | 6,40E-03  | 0        | 0         |  |  |
| 4              | EP-Terrestial                                               |                | mol                | N -eq              | 2,64E+01    | 6,44E-02 | 4,20E-05 | 0          | 7,01E-02  | 0        | 0         |  |  |
|                | POCP                                                        |                | kg NM              | VOC -eq            | 5,84E+00    | 2,47E-02 | 1,38E-05 | 0          | 2,37E-02  | 0        | 0         |  |  |
|                | ADP-minerals&metals                                         | s <sup>1</sup> | kg s               | Sb-eq              | 3,19E-01    | 2,80E-04 | 5,06E-08 | 0          | 2,30E-04  | 0        | 0         |  |  |
|                | ADP-fossil <sup>1</sup>                                     |                | 1                  | MJ                 | 1,50E+04    | 1,53E+02 | 3,92E-02 | 0          | 1,15E+02  | 0        | 0         |  |  |
| %              | WDP <sup>1</sup>                                            |                | r                  | m <sup>3</sup>     | 2,09E+04    | 1,48E+02 | 1,39E-01 | 0          | 2,61E+02  | 0        | 0         |  |  |
|                | Indicator                                                   | U              | Jnit               | B5                 | В6          | В7       | C1       | C2         | C3        | C4       | D         |  |  |
|                | GWP-total                                                   | kg C           | O <sub>2</sub> -eq | 0                  | 1,77E+03    | 0        | 2,73E-01 | 6,76E+00   | 1,45E+01  | 7,82E-01 | -4,20E+02 |  |  |
|                | GWP-fossil                                                  | kg C           | O <sub>2</sub> -eq | 0                  | 1,75E+03    | 0        | 2,73E-01 | 6,75E+00   | 1,45E+01  | 7,81E-01 | -4,13E+02 |  |  |
|                | GWP-biogenic                                                | kg C           | O <sub>2</sub> -eq | 0                  | 1,82E+01    | 0        | 5,11E-05 | 2,79E-03   | 5,50E-03  | 5,46E-04 | -1,47E+00 |  |  |
|                | GWP-luluc                                                   | kg C           | O <sub>2</sub> -eq | 0                  | 2,36E+00    | 0        | 2,15E-05 | 2,40E-03   | 4,92E-04  | 1,30E-04 | -5,78E+00 |  |  |
| Ö              | ODP                                                         | kg CF          | C11 -eq            | 0                  | 5,96E-05    | 0        | 5,89E-08 | 1,53E-06   | 1,90E-07  | 1,08E-07 | -2,22E-02 |  |  |
|                | AP                                                          | mol            | H+ -eq             | 0                  | 7,03E+00    | 0        | 2,85E-03 | 1,94E-02   | 4,28E-03  | 2,69E-03 | -3,42E+00 |  |  |
| -              | EP-FreshWater                                               | kg             | P -eq              | 0                  | 1,43E-01    | 0        | 9,92E-07 | 5,40E-05   | 3,13E-05  | 5,27E-06 | -2,40E-02 |  |  |
| 4              | EP-Marine k                                                 |                | N -eq              | 0                  | 1,18E+00    | 0        | 1,26E-03 | 3,84E-03   | 1,33E-03  | 1,29E-03 | -4,03E-01 |  |  |
| <del>**</del>  | EP-Terrestial m                                             |                | N -eq              | 0                  | 1,69E+01    | 0        | 1,38E-02 | 4,30E-02   | 1,42E-02  | 1,02E-02 | -4,50E+00 |  |  |
|                | POCP kg N                                                   |                | IVOC -eq           | 0                  | 3,60E+00    | 0        | 3,80E-03 | 1,65E-02   | 3,65E-03  | 2,98E-03 | -1,64E+00 |  |  |
| eS.            | ADP-minerals&metals <sup>1</sup> k                          |                | Sb-eq              | 0                  | 1,56E-02    | 0        | 4,18E-07 | 1,87E-04   | 9,30E-06  | 5,05E-06 | -6,16E-03 |  |  |
| -oA            | ADP-fossil <sup>1</sup>                                     |                | N 4 1              | 0                  | 2.275 - 0.4 | 0        | 3,75E+00 | 1,02E+02   | 7,64E+00  | 7,84E+00 | -4,77E+03 |  |  |
|                | ADP-fossil <sup>1</sup>                                     |                | MJ                 | 0                  | 2,27E+04    | 0        | 3,73L+00 | .,022 - 02 | .,0.12.00 | 7,042100 | 4,772103  |  |  |

GWP-total = Global Warming Potential total; GWP-fossil = Global Warming Potential fossil fuels; GWP-biogenic = Global Warming Potential biogenic; GWP-luluc = Global Warming Potential land use and land use change; ODP = Depletion potential of the stratospheric ozone layer; AP = Acidification potential, Accumulated Exceedance; EP-freshwater = Eutrophication potential, fraction of nutrients reaching freshwater end compartment: EP-marine = Eutrophication potential, fraction of nutrients reaching marine end compartment; EP-terrestrial = Eutrophication potential, Accumulated Exceedance; POCP = Formation potential of tropospheric ozone; ADP-minerals&metals = Abiotic depletion potential for non-fossil resources; ADP-fossil = Abiotic depletion for fossil resources potential; WDP = Water (user) deprivation potential, deprivation-weighted water consumption

#### Remarks to environmental impacts

<sup>&</sup>quot;Reading example: 9,0 E-03 = 9,0\*10-3 = 0,009"

<sup>\*</sup>INA Indicator Not Assessed

<sup>1.</sup> The results of this environmental impact indicator shall be used with care as the uncertainties on these results are high or as there is limited experienced with the indicator

| Addition    | Additional environmental impact indicators |                   |     |          |          |          |          |          |          |           |  |  |  |
|-------------|--------------------------------------------|-------------------|-----|----------|----------|----------|----------|----------|----------|-----------|--|--|--|
|             | Indicator                                  | Unit              |     | A1-A3    | A4       | A5       | B1       | B2       | В3       | B4        |  |  |  |
|             | PM                                         | Disease incider   | nce | 1,37E-04 | 6,20E-07 | 2,11E-10 | 0        | 2,70E-07 | 0        | 0         |  |  |  |
| (**)<br>E   | IRP <sup>2</sup>                           | kgBq U235 -e      | q   | 2,56E+01 | 6,69E-01 | 1,77E-04 | 0        | 2,73E-01 | 0        | 0         |  |  |  |
|             | ETP-fw <sup>1</sup>                        | CTUe              |     | 6,41E+04 | 1,14E+02 | 3,74E-02 | 0        | 1,17E+02 | 0        | 0         |  |  |  |
|             | HTP-c <sup>1</sup>                         | CTUh              |     | 4,57E-06 | 0,00E+00 | 1,00E-12 | 0        | 5,84E-09 | 0        | 0         |  |  |  |
| 44 <u>Q</u> | HTP-nc                                     | CTUh              |     | 5,55E-05 | 1,24E-07 | 3,50E-11 | 0        | 1,25E-07 | 0        | 0         |  |  |  |
|             | SQP <sup>1</sup>                           | dimensionles      | S   | 4,96E+03 | 1,07E+02 | 6,84E-02 | 0        | 2,43E+01 | 0        | 0         |  |  |  |
| Inc         | dicator                                    | Unit              | B5  | В6       | В7       | C1       | C2       | C3       | C4       | D         |  |  |  |
|             | PM                                         | Disease incidence | 0   | 3,44E-05 | 0        | 7,54E-08 | 4,13E-07 | 3,69E-08 | 4,82E-08 | -3,17E-05 |  |  |  |
| de-cell     |                                            |                   |     |          |          |          |          |          |          |           |  |  |  |

| Inc          | dicator             | Unit              | B5 | B6       | B7 | C1       | C2       | C3       | C4       | D         |
|--------------|---------------------|-------------------|----|----------|----|----------|----------|----------|----------|-----------|
|              | PM                  | Disease incidence | 0  | 3,44E-05 | 0  | 7,54E-08 | 4,13E-07 | 3,69E-08 | 4,82E-08 | -3,17E-05 |
|              | IRP <sup>2</sup>    | kgBq U235 -eq     | 0  | 1,11E+02 | 0  | 1,61E-02 | 4,46E-01 | 3,31E-02 | 3,57E-02 | -1,63E+01 |
|              | ETP-fw <sup>1</sup> | CTUe              | 0  | 4,04E+04 | 0  | 2,05E+00 | 7,57E+01 | 1,13E+02 | 1,65E+03 | -1,84E+04 |
| 40.4         | HTP-c <sup>1</sup>  | CTUh              | 0  | 7,97E-07 | 0  | 0,00E+00 | 0,00E+00 | 1,70E-09 | 8,72E-09 | -1,39E-06 |
| 48° <u>B</u> | HTP-nc <sup>1</sup> | CTUh              | 0  | 2,64E-05 | 0  | 1,86E-09 | 8,27E-08 | 5,29E-08 | 5,88E-07 | -7,23E-06 |
|              | SQP <sup>1</sup>    | dimensionless     | 0  | 3,73E+04 | 0  | 4,76E-01 | 7,14E+01 | 2,72E+00 | 2,01E+01 | -2,29E+02 |

PM = Particulate Matter emissions; IRP = Ionizing radiation – human health; ETP-fw = Eco toxicity – freshwater; HTP-c = Human toxicity – cancer effects; HTP-nc = Human toxicity – non cancer effects; SQP = Potential Soil Quality Index (dimensionless)

<sup>&</sup>quot;Reading example: 9,0 E-03 = 9,0\*10-3 = 0,009"

<sup>\*</sup>INA Indicator Not Assessed

<sup>1.</sup> The results of this environmental impact indicator shall be used with care as the uncertainties on these results are high or as there is limited experienced with the indicator

<sup>2.</sup> This impact category deals mainly with the eventual impact of low dose ionizing radiation on human health of the nuclear fuel cycle. It does not consider effects due to possible nuclear accidents, occupational exposure nor due to radioactive waste disposal in underground facilities. Potential ionizing radiation from the soil, from radon and from some construction materials is also not measured by this indicator.

| Resource use |           |                |       |          |          |          |          |           |          |           |
|--------------|-----------|----------------|-------|----------|----------|----------|----------|-----------|----------|-----------|
|              | Indicator |                | Unit  | A1-A3    | A4       | A5       | B1       | B2        | В3       | B4        |
|              | PERE      |                | MJ    | 1,34E+03 | 2,19E+00 | 9,90E-04 | 0        | 4,92E+00  | 0        | 0         |
|              | PERM      |                | MJ    | 0,00E+00 | 0,00E+00 | 0,00E+00 | 0        | 0,00E+00  | 0        | 0         |
| i,           | PERT      |                | MJ    | 1,34E+03 | 2,19E+00 | 9,90E-04 | 0        | 4,92E+00  | 0        | 0         |
|              | PENRE     |                | MJ    | 1,48E+04 | 1,53E+02 | 3,92E-02 | 0        | 8,84E+01  | 0        | 0         |
|              | PENRM     |                | MJ    | 2,28E+02 | 0,00E+00 | 0,00E+00 | 0        | 0,00E+00  | 0        | 0         |
| <b>I</b>     | PENRT     |                | MJ    | 1,50E+04 | 1,53E+02 | 3,92E-02 | 0        | 8,84E+01  | 0        | 0         |
|              | SM        |                | kg    | 1,64E+01 | 0,00E+00 | 0,00E+00 | 0        | 0,00E+00  | 0        | 0         |
| 2            | RSF       |                | MJ    | 1,82E+01 | 7,84E-02 | 2,60E-05 | 0        | 2,64E-01  | 0        | 0         |
|              | NRSF      |                | MJ    | 2,42E+02 | 2,80E-01 | 6,80E-05 | 0        | 1,25E-01  | 0        | 0         |
| <u>%</u>     | FW        |                | $m^3$ | 8,11E+00 | 1,64E-02 | 2,07E-05 | 0        | 6,44E-02  | 0        | 0         |
| In           | dicator   | Unit           | B5    | В6       | В7       | C1       | C2       | C3        | C4       | D         |
|              | PERE      | МЈ             | 0     | 1,95E+04 | 0        | 2,03E-02 | 1,46E+00 | 1,06E+00  | 2,88E-01 | -1,50E+03 |
| Z,           | PERM      | MJ             | 0     | 0,00E+00 | 0        | 0,00E+00 | 0,00E+00 | 0,00E+00  | 0,00E+00 | 0,00E+00  |
| ्रहे         | PERT      | MJ             | 0     | 1,95E+04 | 0        | 2,03E-02 | 1,46E+00 | 1,06E+00  | 2,88E-01 | -1,50E+03 |
|              | PENRE     | MJ             | 0     | 2,27E+04 | 0        | 3,75E+00 | 1,02E+02 | 7,64E+00  | 7,84E+00 | -4,77E+03 |
| Å            | PENRM     | МЈ             | 0     | 0,00E+00 | 0        | 0,00E+00 | 0,00E+00 | 0,00E+00  | 0,00E+00 | 0,00E+00  |
| IA.          | PENRT     | МЈ             | 0     | 2,27E+04 | 0        | 3,75E+00 | 1,02E+02 | 7,64E+00  | 7,84E+00 | -4,77E+03 |
|              | SM        | kg             | 0     | 0,00E+00 | 0        | 1,84E-03 | 0,00E+00 | 1,04E-04  | 9,20E-05 | 1,49E+00  |
| 2            | RSF       | МЈ             | 0     | 7,33E+02 | 0        | 4,99E-04 | 5,23E-02 | 2,26E-02  | 6,18E-03 | 3,42E+00  |
| <u> </u>     | NRSF      | МЈ             | 0     | 3,88E+00 | 0        | 7,35E-03 | 1,87E-01 | -8,27E-04 | 1,58E-02 | 1,13E+02  |
| %            | FW        | m <sup>3</sup> | 0     | 7,24E+01 | 0        | 1,93E-04 | 1,09E-02 | 6,89E-02  | 1,11E-02 | -7,94E+00 |

PERE = Use of renewable primary energy excluding renewable primary energy resources used as raw materials; PERM = Use of renewable primary energy resources used as raw materials; PERT = Total use of renewable primary energy resources; PENRE = Use of non renewable primary energy excluding non-renewable primary energy resources used as raw materials; PENRM = Use of non renewable primary energy resources; SM = Use of secondary materials; RSF = Use of renewable secondary fuels; NRSF = Use of non-renewable secondary fuels; FW = Net use of fresh water

"Reading example: 9,0 E-03 = 9,0\*10-3 = 0,009" \*INA Indicator Not Assessed

| End of life - Was | ste       |      |      |          |          |          |          |          |          |           |
|-------------------|-----------|------|------|----------|----------|----------|----------|----------|----------|-----------|
|                   | Indicator |      | Unit | A1-A3    | A4       | A5       | B1       | B2       | В3       | B4        |
|                   | HWD       |      | kg   | 9,49E+00 | 7,90E-03 | 0,00E+00 | 0        | 2,33E-02 | 0        | 0         |
| ₫                 | NHWD      |      | kg   | 3,84E+02 | 7,45E+00 | 1,20E-01 | 0        | 2,15E+00 | 0        | 0         |
| ā                 | RWD       |      | kg   | 2,68E-02 | 1,04E-03 | 0,00E+00 | 0        | 2,93E-04 | 0        | 0         |
| Inc               | dicator   | Unit | B5   | В6       | В7       | C1       | C2       | C3       | C4       | D         |
| Ā                 | HWD       | kg   | 0    | 3,00E+00 | 0        | 1,10E-04 | 5,27E-03 | 5,00E-03 | 1,33E-01 | 6,55E-01  |
|                   | NHWD      | kg   | 0    | 1,39E+02 | 0        | 4,44E-03 | 4,97E+00 | 1,11E+00 | 4,29E+01 | -1,34E+02 |
| 8                 | RWD       | kg   | 0    | 7,15E-02 | 0        | 2,60E-05 | 6,96E-04 | 4,08E-06 | 3,11E-05 | -1,54E-02 |

HWD = Hazardous waste disposed; NHWD = Non-hazardous waste disposed; RWD = Radioactive waste disposed

"Reading example: 9,0 E-03 = 9,0\*10-3 = 0,009" \*INA Indicator Not Assessed

| End of life - Output flow |         |      |      |          |          |          |          |          |          |           |  |  |  |
|---------------------------|---------|------|------|----------|----------|----------|----------|----------|----------|-----------|--|--|--|
| In                        | dicator |      | Unit | A1-A3    | A4       | A5       | B1       | B2       | В3       | B4        |  |  |  |
| <b>@▷</b>                 | CRL     | J    | kg   | 0,00E+00 | 0,00E+00 | 0,00E+00 | 0        | 0,00E+00 | 0        | 0         |  |  |  |
| \$\                       | ⇔ MFR   |      | kg   | 3,42E+01 | 0,00E+00 | 6,13E-02 | 0        | 3,22E-05 | 0        | 0         |  |  |  |
| D₽                        | MEF     | ₹    | kg   | 3,21E+00 | 0,00E+00 | 6,00E-06 | 0        | 6,09E-01 | 0        | 0         |  |  |  |
| <b>₹</b> D                | EEE     |      | MJ   | 2,39E+00 | 0,00E+00 | 9,22E-06 | 0        | 3,18E-01 | 0        | 0         |  |  |  |
| DI                        | EET     |      | MJ   | 3,62E+01 | 0,00E+00 | 1,39E-04 | 0        | 4,80E+00 | 0        | 0         |  |  |  |
| Indicat                   | tor     | Unit | B5   | В6       | В7       | C1       | C2       | C3       | C4       | D         |  |  |  |
| <b>®</b>                  | CRU     | kg   | 0    | 0,00E+00 | 0        | 0,00E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00  |  |  |  |
| &▷                        | MFR     | kg   | 0    | 0,00E+00 | 0        | 1,81E-03 | 0,00E+00 | 1,58E+02 | 1,19E-03 | -5,82E-02 |  |  |  |
| DØ                        | MER     | kg   | 0    | 0,00E+00 | 0        | 5,61E-06 | 0,00E+00 | 2,98E+00 | 1,65E-05 | -7,66E-03 |  |  |  |
| 50                        | EEE     | MJ   | 0    | 0,00E+00 | 0        | 1,92E-05 | 0,00E+00 | 4,33E+00 | 5,23E-04 | -1,88E-02 |  |  |  |
| D.                        | EET     | MJ   | 0    | 0,00E+00 | 0        | 2,91E-04 | 0,00E+00 | 6,55E+01 | 7,91E-03 | -2,84E-01 |  |  |  |

CRU = Components for re-use; MFR = Materials for recycling; MER = Materials for energy recovery; EEE = Exported energy electrical; EET = Exported energy thermal

"Reading example: 9,0 E-03 = 9,0\*10-3 = 0,009" \*INA Indicator Not Assessed

| Biogenic Carbon Content                           |      |                     |  |  |  |  |  |  |  |
|---------------------------------------------------|------|---------------------|--|--|--|--|--|--|--|
| Indicator                                         | Unit | At the factory gate |  |  |  |  |  |  |  |
| Biogenic carbon content in product                | kg C | 0,00E+00            |  |  |  |  |  |  |  |
| Biogenic carbon content in accompanying packaging | kg C | 0,00E+00            |  |  |  |  |  |  |  |

Note: 1 kg biogenic carbon is equivalent to 44/12 kg CO2

# **Additional requirements**

# Greenhouse gas emissions from the use of electricity in the manufacturing phase

National production mix from import, low voltage (production of transmission lines, in addition to direct emissions and losses in grid) of applied electricity for the manufacturing process (A3).

| Electricity mix            | Source        | Amount | Unit         |
|----------------------------|---------------|--------|--------------|
| Electricity, Denmark (kWh) | ecoinvent 3.6 | 338,20 | g CO2-eq/kWh |

#### **Dangerous substances**

The product contains no substances given by the REACH Candidate list.

#### **Indoor environment**

# **Additional Environmental Information**

| Additional environmental impact indicators required in NPCR Part A for construction products |                        |                        |          |          |          |          |          |          |           |  |  |
|----------------------------------------------------------------------------------------------|------------------------|------------------------|----------|----------|----------|----------|----------|----------|-----------|--|--|
| Indicator                                                                                    | Unit                   | Unit                   |          | A4       | A5       | B1       | B2       | В3       | B4        |  |  |
| GWPIOBC                                                                                      | kg CO <sub>2</sub> -eq | kg CO <sub>2</sub> -eq |          | 1,01E+01 | 9,51E-03 | 0        | 7,79E+00 | 0        | 0         |  |  |
| Indicator                                                                                    | Unit                   | B5                     | В6       | В7       | C1       | C2       | C3       | C4       | D         |  |  |
| GWPIOBC                                                                                      | kg CO <sub>2</sub> -eq | 0                      | 2,45E+03 | 0        | 2,73E-01 | 6,76E+00 | 1,45E+01 | 7,88E-01 | -4,56E+02 |  |  |

GWP-IOBC: Global warming potential calculated according to the principle of instantaneous oxidation. In order to increase the transparency of biogenic carbon contribution to climate impact, the indicator GWP-IOBC is required as it declares climate impacts calculated according to the principle of instantaneous oxidation. GWP-IOBC is also referred to as GWP-GHG in context to Swedish public procurement legislation.

# **Bibliography**

ISO 14025:2010 Environmental labels and declarations - Type III environmental declarations - Principles and procedures.

ISO 14044:2006 Environmental management - Life cycle assessment - Requirements and guidelines.

EN 15804:2012+A2:2019 Environmental product declaration - Core rules for the product category of construction products.

ISO 21930:2017 Sustainability in buildings and civil engineering works - Core rules for environmental product declarations of construction products.

ecoinvent v3, Allocation, cut-off by classification, Swiss Centre of Life Cycle Inventories.

Iversen et al., (2021) eEPD v2021.09 Background information for EPD generator tool system verification, LCA.no Report number: 07.21 Graafland and Iversen (2022) EPD generator for NPCR 030 Ventilation components, Background information for EPD generator application and LCA data, LCA.no report number: 12.22

NPCR Part A: Construction products and services. Ver. 2.0. April 2021, EPD-Norge.

NPCR 030 Part B for Ventilation components, Ver. 1.0, 18.05.2021, EPD Norway.

| @ and navas             | Program operator and publisher              | Phone:  | +47 977 22 020       |
|-------------------------|---------------------------------------------|---------|----------------------|
| <pre>@ epd-norge</pre>  | The Norwegian EPD Foundation                | e-mail: | post@epd-norge.no    |
| Global program operatør | Post Box 5250 Majorstuen, 0303 Oslo, Norway | web:    | www.epd-norge.no     |
|                         | Owner of the declaration:                   | Phone:  | +47 63 87 07 70      |
| <b>EXHAUSTO</b>         | EXHAUSTO AS                                 | e-mail: | lrr@exhausto.no      |
|                         | Hvamsvingen 4, 2013 Skjetten, Norway        | web:    | Exhausto.no          |
|                         | Author of the Life Cycle Assessment         | Phone:  | +47 916 50 916       |
| (LCA)                   | LCA.no AS                                   | e-mail: | post@lca.no          |
| .no                     | Dokka 6A, 1671 Kråkerøy, Norway             | web:    | www.lca.no           |
|                         | Developer of EPD generator                  | Phone:  | +47 916 50 916       |
| (LCA)                   | LCA.no AS                                   | e-mail: | post@lca.no          |
| .no                     | Dokka 6A, 1671 Kråkerøy, Norway             | web:    | www.lca.no           |
| ECD PLATFORM            | ECO Platform                                | web:    | www.eco-platform.org |
| VERIFIED                | ECO Portal                                  | web:    | ECO Portal           |